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Totalsynthese von (ÿ)-Strychnin über den
Wieland-Gumlich-Aldehyd**
Daniel SoleÂ, Josep Bonjoch,* Silvina García-Rubio,
Emma PeidroÂ und Joan Bosch*

Strychnin, das berühmteste Strychnos-Alkaloid,[1] ist ein
seit langem bekannter Naturstoff. Seine komplexe heptacy-
clische Struktur, die aus nur 24 Gerüstatomen besteht und
sechs benachbarte asymmetrische Zentren enthält, von denen
sich fünf im zentralen Cyclohexanring befinden, stellt für
Chemiker eine ständige präparative Herausforderung dar.[2]

Nachdem die klassische Totalsynthese von Strychnin, eine
Pionierleistung von Woodward etal. ,[3] annähernd 40 Jahre
lang die einzige Synthese geblieben war, haben in jüngerer
Zeit fünf Arbeitsgruppen neue Totalsynthesen dieses Alka-
loids veröffentlicht, die entweder über Isostrychnin[4] oder
über den Wieland-Gumlich-Aldehyd[5] verlaufen. Allerdings
gelang nur in einem Fall die enantioselektive Totalsynthese
des natürlichen Enantiomers, (ÿ)-Strychnin.[5 c] Diese elegan-
te enantioselektive Synthese von Overman et al. nutzt die
Doppelstrategie aus kationischer Aza-Cope-Umlagerung und
Mannich-Cyclisierung zum Aufbau des Alkaloid-Grundge-
rüstes und steigerte die Gesamtausbeute ± bei fast gleicher
Stufenzahl wie die Synthese von Woodward etal. ± um den
Faktor 105.

Als bisherigen Höhepunkt unserer Untersuchungen zur
Synthese von Strychnos-Alkaloiden[6] beschreiben wir hier
eine neue Synthese von (ÿ)-Strychnin. Sie verläuft über den
Wieland-Gumlich-Aldehyd und geht von Cyclohexan-1,3-
dion aus. Diese Verbindung bildet den zentralen E-Ring von
Strychnin,[7] von dem aus der Pyrrolidin-, Piperidin- und
Indolinring nacheinander in drei unterschiedlichen Phasen
aufgebaut werden. Diese Strategie hat sich bei der Synthese

rungsparameter; R1� 0.044, wR2� 0.102, GOF� 1.102 für 1691
Reflexe mit F> 4s(F) (R1� 0.106, wR2� 0.141, GOF� 1.281 für alle
2376 unabhängigen Reflexe). b) Kristallstrukturdaten von 2-CA :
C24H40O5 ´ C6H12N2O, Kristallgröûe 0.6� 0.2� 0.07 mm, T� 100 K,
Raumgruppe P21, a� 12.353(2), b� 7.675(1), c� 16.359(4) �, b�
111.09(2)8, V� 1447.1(5) �3, Z� 2, 1ber.� 1.232 gcmÿ3, m�
0.085 mmÿ1, MoKa-Strahlung (l� 0.71073 �). Daten wurden bis zu
2q� 528 gesammelt (q-2q-Scan). Die Struktur wurde mit 2823
Reflexen mit positiven F 2-Werten verfeinert; 343 Verfeinerungspa-
rameter; R1� 0.043, wR2� 0.110, GOF� 1.051 für 2425 Reflexe mit
F> 4s(F) (R1� 0.076, wR2� 0.125, GOF� 1.084 für alle 3066 unab-
hängigen Reflexe). c) Kristallstrukturdaten von 3-CA : C24H40O5 ´
C7H14N2O, Kristallgröûe 0.6� 0.2� 0.1, T� 293 K, monoklin, Raum-
gruppe P21, a� 12.754(3), b� 7.881(2), c� 16.355(3) �, b�
111.97(3)8, V� 1524.5(6) �3, Z� 2, 1ber.� 1.200 g cmÿ3, m�
0.655 mmÿ1, CuKa-Strahlung (l� 1.54178 �). Daten wurden bis zu
2q� 1408 gesammelt (q-2q-Scan). Die Struktur wurde mit 2534
Reflexen mit positiven F 2-Werten verfeinert; 343 Verfeinerungspa-
rameter; R1� 0.041, wR2� 0.111, GOF� 1.077 für 2340 Reflexe mit
F> 4s(F) (R1� 0.052, wR2� 0.122, GOF� 1.084 für alle 2639 unab-
hängigen Reflexe). Die Gast-N-Nitrosogruppe ist in zwei Positionen
fehlgeordnet. Unverändert blieben die Abstände 1 ± 2 und 1 ± 3, sowie
die Planarität für die N-Nitrosaminogruppe während der Verfeine-
rung. d) Kristallstrukturdaten von 1-DCA : 2C24H40O4 ´ C5H10N2O,
Kristallgröûe 0.6� 0.45� 0.2 mm, T� 130 K, orthorhombisch, Raum-
gruppe P212121, a� 26.730(4), b� 13.228(2), c� 13.971(4) �, V�
4346(2) �3, Z� 4, 1ber.� 1.209 gcmÿ3, m� 0.081 mmÿ1, MoKa-Strah-
lung (l� 0.71073 �). Daten wurden bis zu 2q� 488 gesammelt (w-q-
Scan). Die Struktur wurde mit 4345 Reflexen mit positiven F 2-Werten
verfeinert; 530 Verfeinerungsparameter; R1� 0.056, wR2� 0.132,
GOF� 1.070 für 3459 Reflexe mit F> 4s(F) (R1� 0.080, wR2�
0.148, GOF� 1.073 für alle 4347 unabhängigen Reflexe). Das Gast-
molekül war über drei Positionen fehlgeordnet. Es wurde isotrop als
starrer Körper mit der molekularen Geometrie von 1 in 1-CA
verfeinert. Summe der Besetzungszahl wurde zu 1.00 (0.55(1) (pR-
Isomer) sowie 0.30(1) und 0.15(1) (pS-Isomer)) verfeinert.
e) Kristallstrukturdaten von 3-DCA : 2 C24H40O4 ´ C7H14N2O, Kristall-
gröûe 0.4� 0.2� 0.2 mm, T� 130 K, orthorhombisch, Raumgruppe
P212121, a� 26.845(5), b� 13.583(3), c� 14.001(3) �, V� 5105(2) �3,
Z� 4, 1ber.� 1.206 g cmÿ3, m� 0.080 mmÿ1, MoKa-Strahlung (l�
0.71073 �). Daten wurden bis zu 2q� 488 gesammelt (w-q-Scan).
Die Struktur wurde mit 3661 Reflexen mit positiven F 2-Werten
verfeinert; 539 Verfeinerungsparameter; R1� 0.059, wR2� 0.147,
GOF� 1.013 für 2496 Reflexe mit F> 4s(F) (R1� 0.176, wR2�
0.200, GOF� 1.094 für alle 4485 unabhängigen Reflexe). Das Gast-
molekül wurde anisotrop verfeinert, aber Störungen wurden wegen
schwacher molekularer Geometrie, Form des Ellipsoids und groûer
Restpeaks nahe dem N-Nitrosoatom angenommen. Deswegen wurde
die Geometrie des Gastes der von 3 im Komplex 3-CA angepaût.
Daraufhin wurde das Gastmolekül isotrop als starrer Körper ver-
feinert. Summe der beiden Besetzungszahlen des Gastmoleküls wurde
auf 1.0 festgelegt. Die Besetzungszahlen des E-angereicherten
Stereoisomers wurde auf 0.67(1) verfeinert. f) Die kristallographi-
schen Daten (ohne Strukturfaktoren) der in dieser Veröffentlichung
beschriebenen Strukturen wurden als ¹supplementary publication no.
CCDC-101943 ± CCDC-101947ª beim Cambridge Crystallographic
Data Centre hinterlegt. Kopien der Daten können kostenlos bei
folgender Adresse in Groûbritannien angefordert werden: CCDC, 12
Union Road, Cambridge CB2 1EZ (Fax: (�44) 1223-336-033; E-mail :
deposit@ccdc.cam.ac.uk).
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von pentacyclischen Strychnos-Alkaloiden vom Curantyp als
sinnvoll erwiesen.[6 d] Die wichtigsten Aspekte der Synthese
sind: 1) Die leichte Herstellung ± in nur vier Stufen aus
Cyclohexan-1,3-dion ± der ersten enantiomerenreinen Zwi-
schenstufe, dem 3a-(2-Nitrophenyl)octahydroindol-4-on 2,
das das kritische quartäre C7-Zentrum enthält (Schema 1);

Schema 1. Synthese von (ÿ)-Strychnin: a) 2-IC6H4NO2, K2CO3, DMSO,
85 ± 90 8C, 72%; b) BrCH2CH�CH2, K2CO3, Aceton, Rückfluû, 85%;
c) Toluol, geschlossenes Rohr, 180 ± 190 8C, 80 %; d) O3, CH2Cl2, ÿ78 8C,
dann (S)-PhCH(CH3)NH2 ´ HCl, NaBH3CN, iPrOH, 37 %; e) ClCO2CHCl-
Me, 135 8C, 72 %; f) HN(SiMe3)2, Me3SiI, CH2Cl2/Pentan (1/1), ÿ20 8C;
g) PhSeCl, (PhSe)2, THF, 70%; h) O3, CH2Cl2,ÿ78 8C, dann iPr2NH, 72%;
i) MeOH, Rückfluû, dann (Z)-BrCH2CI�CHCH2OTBDMS, K2CO3, LiI,
CH3CN, 50 8C, 74%; j) Pd(OAc)2, PPh3, Et3N, 90 8C, 53 %; k) LiN(SiMe3)2,
HMPA, THF, ÿ78 8C, dann NCCO2Me, 67%; l) Zn-Staub, H2SO4, MeOH,
Rückfluû; m) NaH, MeOH, Rückfluû, 26 %; n) DIBAL, Toluol, ÿ40 8C,
65%; o) CH2(CO2H)2, Ac2O, NaOAc, AcOH, 110 8C, 49 %. ± DMSO�
Dimethylsulfoxid, HMPA�Hexamethylphosphorsäuretriamid, TBDMS�
tert-Butyldimethylsilyl.

2) der Ringschluû des Piperidinrings in einer Pd-katalysierten
Reaktion (Knüpfung der Bindung C15-C20), die den stereo-
selektiven Einbau der E-konfigurierten C20-Doppelbindung
sicherstellt; und 3) der Ringschluû des Indolinrings in einem
fortgeschrittenen Synthesestadium durch reduktive Cyclisie-
rung der a-(2-Nitrophenyl)keton-Einheit.

Das chirale, nichtracemische cis-Octahydroindolon 2 wur-
de, wie früher berichtet,[6d] aus dem prochiralen Dion 1 in
einer Eintopfreaktion hergestellt, die aus einer Ozonolyse mit
einer anschlieûenden doppelten reduktiven Aminierung mit
(S)-1-Phenylethylamin als Aminocyclisierungsmittel[8] be-
stand. Die Entfernung des a-Phenylethylsubstituenten über

die Bildung eines Carbamats, anschlieûende Bildung der
Enoneinheit, Abspaltung der Schutzgruppe vom Pyrrolidin-
Stickstoffatom und schlieûlich die Alkylierung des so erhal-
tenen bicyclischen sekundären Amins mit (Z)-1-Brom-4-
[(tert-butyldimethylsilyl)oxy]-2-iodbut-2-en[9] führte zur
Schlüsselzwischenstufe 4.

Ursprünglich hatten wir gehofft, den Piperidinring mit dem
Ethylidenrest schlieûen zu können und durch eine Pd-
katalysierte Tandemreaktion den funktionalisierten Ein-Koh-
lenstoff-Substituenten an C16 einführen zu können.[10] Aber
zahlreiche Versuche, die Dominoreaktion aus Cyclisierung
und Carbonylierung (Pd-Katalysator, CO, MeOH)[11] einzu-
leiten, schlugen fehl. Stattdessen wurde der Ester isoliert, der
durch Methoxycarbonylierung des zunächst gebildeten Vi-
nylpalladiumderivats entstanden war.[12] Angesichts dieser
Ergebnisse richteten wir unsere Aufmerksamkeit auf eine
weniger direkte Strategie, bei der die Cyclisierung und die
Einführung des funktionalisierten C17-Atoms in zwei ge-
trennten Schritten erreicht werden sollte. Nach umfangrei-
chen Versuchen mit racemischem Ausgangsmaterial wurden
für die Cyclisierung die besten Ergebnisse mit Pd(AcO)2

(0.3 ¾quivalente) und PPh3 (0.6 ¾quivalente) als Katalysator
in Et3N unter kurzzeitigem Erhitzen (30 min) auf 90 8C
erzielt. Unter diesen Bedingungen wurde das tricyclische
Keton 5 in 53 % Ausbeute isoliert. Diese Cyclisierung ist ein
Schlüsselschritt und eine reduktiv verlaufende Variante der
Heck-Reaktion, die für Synthesen relativ selten genutzt
wird.[13] Die Methoxycarbonylierung von 5 mit LiHMDS
(HMDS�Hexamethyldisilazid) und Cyanameisensäureme-
thylester führte zum b-Ketoester 6 (55 % Ausbeute), einer
Verbindung, die bis auf die beiden von Essigsäure abgelei-
teten Kohlenstoffatome alle Atome des heptacyclischen
Zielmoleküls enthält.

Die Synthese des Wieland-Gumlich-Aldehyds aus 6 er-
forderte nur noch die Schlieûung des Indolinrings und die
Reduktion des Esters zu einem Aldehyd. Die Umsetzung von
6 mit Zinkstaub in 10proz. Schwefelsäure (in Methanol)
führte zur Abspaltung der TBDMS-Schutzgruppe und gleich-
zeitig zur reduktiven Cyclisierung der a-(2-Nitrophenyl)ke-
ton-Einheit. Unter diesen Bedingungen wurde die anfänglich
gebildete Anilinacrylat-Zwischenstufe zu einem Gemisch der
epimeren Ester 7 und 8 (Verhältnis ca. 9:1) weiter reduziert.
Dieses wurde durch Umsetzen mit NaH in MeOH unter
Rückfluû zu reinem 8 äquilibriert, das bereits die gewünschte,
natürliche Konfiguration an C16 aufweist. Der pentacyclische
Ester 8, der auch eine Zwischenstufe in der Synthese von
Overman et al.[5c] ist, wurde in 26 % Gesamtausbeute ausge-
hend von 6 isoliert. Schlieûlich führte eine weitere ¾nderung
der Oxidationsstufe durch partielle Reduktion des Esters 8
mit DIBAH (DIBAH�Diisobutylaluminiumhydrid) in To-
luol bei ÿ40 8C zum Wieland-Gumlich-Aldehyd.[14, 15]

Dessen Umsetzung zu Strychnin wurde zwar schon vor
Jahren veröffentlicht,[16] weshalb eine Wiederholung nicht
notwendig schien. Um aber die Totalsynthese des Naturstoffs
zu vervollständigen, folgten wir dem beschriebenen Weg. Das
so erhaltene (ÿ)-Strychnin war gemäû DC sowie IR-, 1H-
NMR- und 13C-NMR-Spektroskopie identisch mit einer Pro-
be natürlicher Herkunft. Der [a]25

D -Wert betrug ÿ119.4 (c�
0.35, CHCl3) [Lit. [16]: [a]25

D �ÿ139 (c� 2.0, CHCl3)], was
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Die Nickel-katalysierte Homoallylierung von
Aldehyden und Ketonen mit 1,3-Dienen und
ihre komplementäre Unterstützung durch
Diethylzink und Triethylboran**
Masanari Kimura, Hidetaka Fujimatsu, Akihiro Ezoe,
Kazufumi Shibata, Masamichi Shimizu,
Satoru Matsumoto und Yoshinao Tamaru*

Die Allylierung von Carbonylverbindungen ist eine Grund-
reaktion in der organischen Synthese, und viele effiziente
Methoden wurden hierfür entwickelt.[1] Auûer den Allyl-
Metall-Verbindungen der Alkali- und Erdalkalimetalle wur-
den auch Allyl-Übergangsmetall-Verbindungen[2] sowie Al-
lylstannane, -silane und -borane[1] zur regio- und stereoselek-
tiven Allylierung von Carbonylsubstraten eingesetzt. Die
Homoallylierung könnte für organische Umsetzungen ebenso
bedeutend sein, doch dieser Methode wurde bisher nur wenig

86 % ee entspricht.[17] Dieser ee-Wert ist ähnlich dem, den wir
bei unserer enantioselektiven Synthese von (ÿ)-Tubifolidin
aus dem Azabicyclus 2 erhalten haben.[6 d]

Wir haben eine kurze enantioselektive Synthese ± 15 Stufen
ausgehend von käuflichem Cyclohexan-1,3-dion ± von (ÿ)-
Strychnin entwickelt, die einen Chiralitätstransfer von (S)-1-
Phenylethylamin einschlieût, um enantiomerenreines 3a-(2-
Nitrophenyl)hexahydroindol-4-on zu erhalten, von dem aus
die weiteren Ringe des Zielmoleküls unter hoher Stereokon-
trolle aufgebaut werden. Unter Berücksichtigung unserer
früheren Arbeit[6d] öffnet die hier entwickelte Strategie einen
allgemeinen, enantioselektiven Zugang zu den Strychnos-
Alkaloiden.

Eingegangen am 14. Juli 1998 [Z 12141]
International Edition: Angew. Chem. Int. Ed. 1999, 38, 395 ± 397
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